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SUMMARY 
The phase behavior and scattering properties of polymer blends, copolymers and net- 

works in solution and in bulk are examined. The theoretical framework used here is 
based upon the extension of the random phase approximation to polymers proposed by 
de Gennes and its application to chains with various architectures. The case of blends 
containing stiff chains is considered and the effect of nematic interaction on the phase 
behavior and scattering properties is discussed. The compressibility problem is reviewed 
in connection with the free volume theory models. The coupling between density and 
composition fluctuations is examined together with the effects of pressure on the struc- 
tural and thermodynamic properties of blends. The dynamics of copolymers are also 
examined in the light of the new developments both from the theoretical and experimen- 
tal fronts. The extent to which the chain architecture affects phase behavior, static scatter- 
ing and dynamic behavior is discussed. A particular emphasis is put on the case of cyclic 
homopolymers and copolymers. Free chains in a network and crosslinked blends are also 
a subject of particular interest in this paper. The interplay between macrophase and 
microphase transitions due to the crosslinks and the electrostatic forces for charged poly- 
mers is also considered. De Gennes' analogy betwen the elastic restoring forces in the 
network and the Coulomb forces in the dielectric medium is generalized by including the 
screening phenomenon. This generalization is required in order to account for the experi- 
mental observations in the low momentum transfer range. Following Briber et al., it is 
argued that the new screening length can be related to the initial fluctuations at the tem- 
perature of crosslinking. 

1. Introduction 

The phase behavior and scattering properties of polymer blends, copolymers and 
crosslinked networks are the subject of intensive investigations both from the theo- 
retical and the experimental points of vieiv'-I4). These studies are important for the 
understanding of the stability of polymer alloys and improvement of the perfor- 
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mance of material composites under stringent environmental conditions where these 
materials admit practical applications. Here, we review some of their fundamental 
aspects focussing essentially on conditions where there are weak fluctuations. We 
also consider the case where the systems undergo pressure forces which could 
induce important modifications in their phase behavior and structural and dynamic 
properties. 

In most of the cases of interest here, models of linear response theory are useful 
in obtaining information related to the scattering and thermodynamic properties. For 
example, the static scattering technique is a basic tool for polymer characterization 
and provides precise measures of the molecular weight, index of polymerization, 
radius of gyration and second virial coefficient. These results are implemented 
through the classical Zimm plot analysis where the inverse scattered intensity is 
represented as a function of q2 and c, where q is the amplitude of the wave vector 
and c is the con~entrationl~). From a theoretical point of view, we shall rely in our 
description of the scattering properties and phase behavior of various systems on the 
random phase approximation (RPA) as first suggested by the Gennes2) but with an 
extension to fit the kind of information one deals with and the system under investi- 
gation. The main assumption implicit in this procedure is to neglect the effect of 
fluctuations. Many experimental studies using different techniques such as static 
light scatteringI6-l8), quasi elastic light 
have revealed that the RPA is a good first order approximation which accounts quite 
well for the qualitative behavior of data obtained from various systems involving 
homopolymers and copolymers of different architectures both in the bulk and in 
solution. This is true as long as the system remains stable and is not subject to strong 
fluctuations. Therefore, we keep our discussions at the level of the standard RPA 
introducing wherever required particular specific features for each problem under 
examination. One can readily within this procedure invoke a renormalization argu- 
ment (i. e. first loop renormalization approximation) by assuming that certain impor- 
tant properties such as the interaction parameters or the excluded volume parameters 
and the friction coefficients are renormalized to include partly the effects of fluctua- 
tions. 

On the other hand, it is sometimes more convenient to introduce molecular prop- 
erties in order to avoid carrying out unnecessary constant factors which are irrele- 
vant for the understanding of the qualitative trends. Examples of such properties are 
the degree of polymerization N = M/mo, which is the ratio of the polymer and the 
monomer molecular weights; the volume fraction of the polymer p is the ratio of the 
concentration c expressed in g/cm3 and the polymer density p; the chain form factor 
P(q)  and the excluded volume parameter v 

and neutron spin 

1 

9s 
v=- -2x  

where ps = 1 - p is the solvent volume fraction and x the polymer-solvent interaction 
parameter. The static structure factor S (4) is proportional to the scattered intensity 
l (q)  
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where q is related to the wavelength of the incident radiation I and the scattering 
angle 6 by the usual relation q = sin(6/2), v - v, is the contrast factor between 
the polymer and the solvent and is given by anlac, the increment of refractive index 
in the case of light scattering. Using Zimm's single contact approximation, one 
findsz7): 

This is a basic result derived long time ago by Zimm and used on a routine basis 
for the measurement of N,  the radius of gyration R, and x. It has been extended to 
multicomponent polymer mixtures and to polymers of different architectures by var- 
ious authors'39328). Some cases will be examined in the present paper. Likewise, 
quasi-elastic scattering techniques provide useful information on the dynamics of 
chains and relaxation processes either in dilute or strong solutions, or in bulk. The 
time evolution of the intermediate scattering function which is directly accessible in 
a dynamic scattering experiment S(q,  t )  is given by the generalized Langevin equa- 
t i o n ' ~ ~ )  

"(" t ,  + sZ(q)S(q,  t )  - 1' du O(q, t ) S ( q ,  u )  = 0 
a t  (4) 

where Q ( q )  is the first cumulant and O(q, t )  is the memory function. In the mean 
field approximation, one can neglect the memory function and assume that the decay 
of S ( q ,  t )  is entirely described by the first cumulant Q(q):  

S ( q ,  t )  = S(q)e-"(q)' (5 )  

The first cumulant is usually defined in terms of a generalized mobility (Onsager 
coefficient) M ( q )  and S(q):  

T is the absolute temperature, kB Boltzmann's constant. M ( q )  is a sum of the 
Rouse term and the hydrodynamic interaction term. The latter one is usually 
obtained from the Oseen tensor model and leads to the mode coupling function 
j+.)9.29, 30): 
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q is the viscosity of the solution and ( the friction coefficient of a monomer of 
size 0: 

In the short time limit, the relaxation of S(q, t )  is well described by Eq. (5) but in 
some cases memory effects are important and a strong deviation from the simple 
exponential decay is observed. For a single chain in a theta solvent, using Rouse 
normal mode analysis, de Gennes obtained3'): 

Extending this normal mode analysis by including hydrodynamic interaction, 
Dubois-Violette and de Gennes obtained a different result3'): 

These expressions are valid in the intermediate q and t ranges defined by 0 < q-' 
< R, and w-' < t < (D&' where w is the monomer jump frequency and D the chain 
diffusion coefficient. 

Pecora3') and Akcasu et al.34) calculated S ( q  t )  in a wider range of q and t values 
including q - 6' and t - (Dq2)-' using a somewhat different normal mode analysis 
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where the function Fikr ( t )  is given by: 

Fikl(t) = IQiI12 + l & I 2  + 2 R e ( Q d ? k ~ ) e - ~ ~ ~ ’ ” ’ ‘  (18) 

Q, and pl are the eigenvectors and eigenvalues of the nearest neighbor interaction 
matrix. For open Gaussian chains, one has: 

The eigenvalues vr (1 = 1 ,  2, ...) are all equal to 1 in the Rouse limit and this pro- 
blem was first solved by Pecora. In the intermediate q-range (a + q-’ + Rg)  one 
obtains de Gennes’ result in Eq. (10). In the presence of hydrodynamic interaction, 
the eigenvalues vr are calculated using the eigenvectors of cyclic polymers. For 
Gaussian unperturbed chains, one finds: 

These results were used extensively in the literature for the interpretation of 
quasi-elastic light and neutron spin echo measurements obtained on differents sys- 
tems and in particular on binary polymer/solvent  solution^'^^^) ternary mixtures of 
two polymers and a and blends. In the small q range where qRg + 1, 
one obtains a diffusive process for which 

where, in the Rouse limit D = DdN and in the presence of hydrodynamic interaction 
one may express D in terms of the hydrodynamic radius Rh by writing: 

D = k,T/( 6 “Rh) (23) 

Rh NIi2 17 (24) 

In the intermediate ranges of q and t defined earlier, one observes the shape func- 
tion derived directly by de Gennes and D u b o i s - V i ~ l e t t e ~ ~ . ~ ~ )  using the normal mode 
method. In the short time and high q limits, the diffusional process of a single mono- 
mer is recovered: 
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In the intermediate q range and at long times, the results of Akcasu, Pecora, de 
Gennes and Dubois-Violette lead to the same result which, in the Rouse limit, reads 

whereas in the presence of hydrodynamic interaction, one finds: 

The scaling frequencies sZR and Qz are given by Eqs. (12) and (15), respectively. 
These results concern single chain properties in theta solvent conditions. Never- 

theless, they are found useful even beyond these conditions where they are applied 
successfully to data where not only excluded volume interaction is present but also 
interactions between chains of different species. They are also used to analyze repta- 
tion of chains in the bulk. Therefore, the above results of S(q, t )  can be used as the 
bare dynamic scattering functions in the generalization of the random phase approx- 
imation (RPA) to dynamical properties. These applications will be discussed in 
more detail later in this paper. 

Another problem which is considered in this paper deals with the effects of cross- 
linking. It is known that crosslinking produces strong effects on the phase behavior 
and scattering properties of blends. In general it induces enhancement of compatibil- 
ity towards macrophase separation but it may give rise to a microphase separation 
transition. This modification of the nature of the phase transition upon crosslinking 
was examined by de Gennes4’) who proposed an analogy with the polarization of 
charges in a dielectric medium. The model of de Gennes predicts a peak in the scat- 
tering intensity and this prediction is consistent with the experimental observation. 
However, unlike the experiment, the model predicts a zero scattering at14) 4 = 0. 
This prompted a correction of the model using a similar analogy with the charges in 
a dielectric medium but including the effect of screening. The screening length is 
identified with the correlation length describing the range of fluctuations existing at 
the moment of c r ~ s s l i n k i n g ~ ’ ~ ~ ~ ) .  

2. Blends and copolymers: bulk and solution 

Eq. (3) gives the structure factor in the case of a polymer/solvent solution. If one 
assumes that the solvent in this binary mixture has a finite size or can be considered 
as a polymer whose properties are designated with a subscript B, then Eq. (3) can be 
written in a slightly different form 

where NB is the degree of polymerization and PB(4)  the form factor of B, and the 
properties of the other polymer are indicated by the subscript A. The interaction 
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parameter between A and B is denoted x. This is the case of an incompressible blend 
where one has 

Eq. (28) is the classical result obtained by de Gennes using the RPA. .Here it has 
been deduced from Zimm’s single contact approximation (SCA) implying that the 
SCA and the RPA belong to the same class of approximations’). 

If the two polymers A and B are connected together and form a diblock copoly- 
mer, one obtains Leibler’s result’’) 

where PAB is a form factor characteristic of the copolymer architecture and can be 
obtained from the geometric relationship between PA, PB and PT; PT is the total form 
factor of the copolymer: 

pT= f 2 p A  + (1 -n2 PB + 2f(1 PAB (31) 

f i s  the composition of the copolymer in monomer A: 

f = N A ~ N A  + NB) (32) 

All these form factors are normalized to 1 at q = 0 and hence S(q = 0) = 0 regard- 
less of the interaction parameter. Within this RPA result the variation of S ( q )  pre- 
sents a maximum at q* = 2/R, where R, is the radius of gyration, also regardless of 
the interaction parameter. However, the height of the maximum increases with x. 
One could improve the RPA by allowing R, to be a function of x as suggested by 
computer simulations. The interaction parameter can reach a high value by changing 
the temperture in such a way that the scattering intensity diverges. When this critical 
value is reached, the system undergoes microphase separation transition (MST) or 
order-disorder transition (ODT). When this transition takes place, the RPA breaks 
down and one should resort to more sophisticated methods to describe the properties 
of the phase separated regions in the medium. The plain RPA and its renormalized 
versions constitute a first order approximation for the description of the scattering 
behavior in the one phase region and eventually, it could be used to predict approxi- 
mately the critical conditions for macro- and microphase separation transitions. 

Eqs. (28) and (30) are classical results which turn out to be extremely useful for 
experimentalists. These equations were and are still extensively used to get an esti- 
mate of the effective interaction parameter between monomer species belonging to 
blends or to block copolymers. 

In the case of a ternary mixture of homopolymer A, homopolymer B and a sol- 
vent, the scattering intensity is obtained within the RPA’343): 
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This result has been extensively used by experimentalists to analyze light scatter- 
ing data obtained from various ternary mixtures of two polymers and a low molecu- 
lar weight solvent. It predicts the correct trends in various different systems, and in 
many cases even a quantitative agreement is observed between data and theory1c18). 
It is worthwhile to recall that the limit of Eq. (33) at q = 0 which describes the for- 
ward scattering intensity has been derived long time ago by Stockmayera) as a spe- 
cial case of multicomponent polymer mixtures in solution using pure thermody- 
namic arguments. His result was the theoretical basis for the analysis of thermody- 
namic scattering data for ternary mixtures until its generalization to finite q by 
Benoit et a1.1343) 

If in addition to the two homopolymers A and B, a copolymer AB is present in 
the mixture, the above result is slightly modified and the scattered intensity 
beCOmeS1.43,43. 

s”,B ( 9 )  = [V)ACNACa)BCNBC]1’2PABC ( 4 )  (39) 

The subscripts H and C refer to homopolymers and copolymers, respectively. 
This result contains both the cases of solutiqn and bulk. In the absence of solvent, 
for an incompressible mixture, one has 9 = -& the same result as in Eq. (30) 
but the bare structure factors given by Eqs. (37) to (39). 

Eq. (36) was used by Duval et al.46’ to analyze neutron scattering data on copoly- 
mers made of two equal blocks of deuterated and ordinary polystyrene (PS) in a 
mixture of deuterated and ordinary toluene at several polymer concentrations. 
Hashimoto et al.47) also used the same equation to examine X-ray data for diblock 
copolymers of polystyrene and polyisoprene (PI) in dioctyl phthalate (DOP) for two 
compositions (50 and 60%) and different temperatures approaching quite close the 
critical temperature for the microphase separation transition. In the latter study, the 
authors used both Eqs. (36) and (28) where they introduced the concept of effective 
contrast and interaction parameter. Their main conclusion is that Eq. (36) provides a 
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reasonable description of the data especially for symmetric diblocks where the zero 
average contrast condition is fulfilled48). 

2.1. Liquid crystalline behavior of stiff polymers 

The generalization of these results to multicomponent polymer mixtures including 
stiff chains has been presented by several  author^^^-^ ’) H a m m o ~ d a ~ ~ ~  5 2 )  developed 
the general formalism for the static scattering properties using the RPA. In addition 
to the enthalpic interaction governing the mixing and demixing of different species, 
one introduces other interactions due to angular correlations (monomer orientations) 
which can give rise to other types of phase transitions. Such interactions can be 
nematic, smectic, discotic etc. We limit our considerations to the case of the nematic 
interaction where one writes the interaction potential between a pair of monomers 
with the orientations d and u“ as: 

W(d U’I) = wg - w1 (u’u‘ - Y3) : (U”U” - U 3 )  (40) 

The first term w0 is isotropic and is independent of the orientations. The second is 
anisotropic and corresponds to the nematic interaction. The Maier-Saupe interaction 
parameter w1 is sensitive to the monomer orientations. For multicomponent mix- 
tures, the interaction parameters become matrices: 

w(u’, u”) = W” - w1 (UIU’ - I/3) : (U”” - Y3) (41) 

The scattering formalism for these mixtures has been worked out by several 
 author^'^-^^) on the basis of an extension of the RPA to include the effect of chain 
stiffness. Here we follow the notations and procedure of H a r n m ~ u d a ~ ~ ~ ~ ~ ) :  

s = [I + sow0 + (2/3)R~wlM-’Rowo]-“So + (2/3)R,Tw,M-’R,] (42) 

where M = I - 2 To wl/3; R,, R and To are given by: 

S(q )  = lduldu’S(q, u, u’) 
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A simple and useful application of these results is a blend of flexible chains A and 
rigid rods B. In this case, Eq. (42 )  to (47) give: 

7Q = 9 1’ - +) ji (7) qbNB 
PBNB 4 

where in (. . .) is the zeroth order Bessel function. 
.I-\ I 

If one has a diblock copolymer AB in which block A is flexible and B is rigid, the 
structure factor becomes: 

2wAR/3 + TAS 
s(q) = (ST + 2xAS)T + 2(wkR’ - 2 p k R ) / 3  

(53)  
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Wagner et reported small-angle neutron scattering (SANS) data on solutions 
of poly(benzy1 L-glutamate) (PBLG) in deuterated dimethylformamide (d-DMF) in a 
wide range of concentrations. They analyzed their results using the modified RPA 
described above and observed a good agreement between data and theoretical pre- 
dictions showing once more the wide range of applications of the RPA and its use- 
fulness to experimentalists. 

2.2. Effects of pressure 

Hammouda and B a ~ e r ~ ~ )  studied blends of deuterated polystyrene (dPS) and poly- 
vinylmethylethylene (PVME) as a function of pressure, temperature and composi- 
tion using small angle neutron scattering. They observed that x(T, P )  has a strong 
pressure dependence. They have also noticed that such dependence is not modified 
by the blend composition which led to the conclusion that compressibility is not the 
reason for the variation of the interaction parameter with composition as suggested 
earlier. Hammouda and Bauer observed that x follows the temperature dependence 

~ ( 7 ;  P )  = A ( P ) / T + B ( P )  (59) 

where both A and B are quite senstive to €? Applying pressure to the blend results in 
damping of fluctuations and shifts the spinodal curve. Janssen et al.58’ also studied 
blends of dPS/PVME by SANS and came to the conclusion that B(P) ,  the entropic 
contribution to the interaction parameter, is strongly pressure dependent whereas the 
enthalpic term A is not sensitive to P. 

The effects of pressure were also studied on block-copolymers. Hadjuk et al.59’ 
performed a small angle X-ray scattering study on PS-polyisoprene (PI) diblock 
copolymer and observed an increase of the ODT (order-disorder transition) tempera- 
ture. Hammouda et a1.60’ considered diblock coolymers of PS-PI in dioctyl phthalate 
(DOP) using SANS. DOP was used to lower the glass transition temperature Tg of 
the copolymer below the ODT temperature and to eliminate possible interferences 
between the effects of Tg and TODT 

If a blend is compressible, the RPA fails to describe properly the scattering beha- 
vior under pressure effects. This approximation has been extended to compressible 
blends by various authors assuming that the monomer-monomer interaction poten- 
tials w,, and Wbb are deduced from the PVT data of pure components. The compres- 
sible RPA version introduces the free volume as an additional component and its 
fraction is estimated from an equation of state. A scheme for analyzing the SANS 
data as a function of pressure starting from the RPA equations for a ternary incom- 
pressible mixture made of polymer species A and B and voids has been suggested. 
Indicating the voids parameters by a subscript 0, the results are61) 
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where the void properties enter through the excluded volume interaction parameters 
vA, vg and vAB: 

So is the bare structure factor related to the void volume fractionfo, the P*’s are 
the cohesive energy densities or internal pressures and the C‘s are 

The characteristic pressures and temperatures P i ,  P;i and T i ,  T i  are tabulated for 
different polymers. The free volume fraction fo is deduced from an equation of state 
such as the Sanchez-Lacombe e q ~ a t i o n ~ ~ . ~ ~ )  

( 1  -fo)2 + P/P* + [Info + 1 -fo]T/r* = 0 (69) 

where the quantity v ) A I N A  + pg lNB is neglected as compared to 1. More details on 
this procedure and its applications to the analysis of S A N S  data can be found else- 
where6”. 

2.3. Compressibility 

B e n ~ i t ’ . ~ ~ )  has shown that in multicomponent polymer mixtures, the forward scat- 
tering intensity Z(q = 0) can be written as a sum of two terms. One is due to density 
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fluctuations and describes the compressibility of the mixture whereas the other term 
is due to composition fluctuations. He wrote 

where (aho) is the scattering length per unit volume of solvent, vo being the molar 
volume of solvent, V the total volume of the sample, NT the total number of particles 
or total number of lattice sites in the Flory-Huggins lattice, NT = V/vo, p is the iso- 
thermal compressibility coefficient: 

The elements of the matrix [q are given by the derivatives of the free energy per 
unit volume: 

[a] is a column vector of contrast factors. Eq. (70) shows that in the forward scat- 
tering direction at p = 0, there is no coupling between density and composition fluc- 
tuations in multicomponent polymer mixtures. A similar expression was derived 
before by des Cloizeaux and Jannink13365). In the case of a binary mixture polymer + 
solvent, Eq. (70) becomes 

l(q = 0) = NTpA(a>2kBTP - vivgpApB(aB/vB - aA/vA)2kBT(a~A/aNB)-’ (74) 

where NT = NA + NB, p A  = NA/Vand pB = NB/Vare the mean number densities of the 
two species in the mixture. the extension of this formalism to finite q’s has not been 
worked out yet. It could be also useful to write the counterpart equation for the time 
dependent scattering as probed by quasielastic light scattering or neutron spin echo 
technique. 

One observes that in Eq. (74) neither the degree of polymerization nor the interac- 
tion parameter appear explicitly. One may assume that they are implicit in the quan- 
tities vA/vo and &pA/aNB. Since the thermodynamic analysis of Benoit is general, it 
would be useful to compare it with the method of scattering theory. Consider the ear- 
lier result for a ternary mixture with two polymers A and B and a slvent and replace 
mentally the solvent by voids. The scattering intensity is written as: 

l ( q )  = (a - s)2sAA(q) + (b  - S)’sBB(q) + 2(a - s ) (b  - s)sAB(q) (75) 

Introducting x,  the mean composition of the blend, and the new concentration 
variables cT (9) and cI (q) 
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(76) 

(77) 

+2[(a-s)x+ ( b - s ) ( l  - x ) ] ( u - b ) S x c ( q )  (78) 

SC, (q) reflects the total concentration fluctuations, Sxx (9) describes the composi- 
tion fluctuations and Sxc(q)  the coupling between them. Starting from the RPA 
result' 

S- ' (q )  = S,-'(q) + v (82) 

one can obtain the explicit form of the partial structure factors SAA(q), S,B(q) and 
S A B  (9) in terms of the bare structure factors: 

S,-,(q), S x x ( q )  and S x c ( q )  are immediately deduced by combining Eqs. (78) to 
(85). Let us consider the conditions under which the coupling term vanishes. One 
has: 
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If the degrees of polymerization are 1, noting that fi ( q  = 0) = xyT and $ (q  = 0) 
= (1 - x) yT, one finds that Sxc (q  = 0) is proportional to xAS - xss + (2x - 1) which 
is zero only if xAS = xss and either x = 0 or x = 1/2 or both. A similar observation 
can be made if one replaces the solvent by free volume. This analysis reduces to 
applying the standard RPA to compressible blends and accounts for the compressi- 
bility through "solvent free volume". This is consistent with Benoit's equation but it 
is not limited to the thermodynamic limit and applies to finite q. The problem which 
remains to be elucidated is whether the uncoupling between density and concentra- 
tion fluctuations is general for a multicomponent mixture and at any q or must be 
applied only under specific conditions. 

2.4. Dynamics of block copolymers 

The dynamics of block copolymers has been investigated by various authors. One 
of the early investigations of this subject using the RPA is due to Akcasu and co- 
worked6). The single chain dynamics and the dynamics of semidilute and concen- 
trated solutions of copolymers was reported The scattering from a pure 
block copolymer is dominated by the structural mode. In the q range much higher 
than the inverse radius of gyration, the radiation probes the local dynamics of the 
chain and one observes internal modes which are similar to the ones observed in 
homopolymers. One has Rouse modes if hydrodynamic interaction is not included 
whereby the relaxation frequency r behaves as q-"". Assuming the flory exponent v 
= 1/2, it gives q4 in the absence of excluded volume interaction and q-3.66 otherwise. 
Should the hydrodynamic interaction be included, one finds that the relaxation fre- 
quency of the internal mode varies as q-3 whether excluded volume interaction is 
important or not. Such interaction introduces only a modification in the numerical 
factor in front of the expression of r(q). As the probe scans the lower q range, one 
observes an entirely different behavior whether one deals with homopolymers or 
block copolymers. For homopolymers, one finds a diffusive mechanism whereby the 
relaxation frequency varies as r = Dq2 and D is the diffusion coefficient of the 
chains. For copolymers, the relaxation is not diffusive since r has a finite limit at q 
= 0. This behvior is also encountered in polyelectrolytes where it is known as the 
plasmon mode69370). The plasmon mode is attributed to the relaxation of counterions 
in the vicinity of polyions as if they were linked together. Likewise, in the case of a 
copolymer, when the block A moves, it pulls the block B with it and, therefore the 
relative relaxation of A and B blocks on the same chain gives rise to the structural 
mode of the copolymer for which the frequency r i s  constant when q = 0. This beha- 
vior has been predicted by Akcasu et a1.66' for block copolymers in the bulk and in 
solution67). The first experimental obervation of this structural mode was made by 
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Borsali et al. using NSE (neutron spin echo), on diblock copolymers of dPS-PS in 
and QELS (quasi-elastic light scattering) on PS-PMMA in toluene71). In 

the former case, a mixture of deuterated and ordinary toluene was used as a solvent 
in order to achieve the zero average contrast condition. The single mode observed in 
this experiment was identified as the structural mode in accordance with the theore- 
tical prediction of RPA. For the PS-PMMA diblock in toluene investigated by 
QELS, two modes were found. The amplitudes and frequencies of these modes were 
analyzed within the theoretical framework and a complete agreement was found 
with regard to the identification of the modes, i.e., the cooperative mode corre- 
sponding to the relaxation of the total concentration fluctuations as in the case of 
homopolymers. The second mode was identified as the structural mode and has 
similar characteristics as the mode observed in the bulk state. Haida, Duval et al.72) 
investigated the dynamics of similar systems and found slightly different results. 
They were not able to observe the structural mode characteristic of the internal 
architecture of the copolymer. They observed nonetheless two modes. The fast 
mode corresponds to the diffusion of the chain as a whole and the slow mode repre- 
sents the diffusion of copolymer micelles. Jian et al.73) and Pan et al.74’ performed 
QELS studies of various block copolymers in semidilute and concentrated solutions 
and found the overall diffusion mode, the micellar mode and a third mode which is 
attributed to the composition polydispersity. This new mode is found to behave as 
the structural mode of the copolymer in that its relxation frequency has a constant 
value at q = 0. We shall come back to this problem in the following section where 
the case of cyclic copolymers and homopolymers is considered and their dynamical 
properties compared with the linear chain systems. 

3. The case of cyclic homopolymers and copolymers 

In the preceeding section, we have examined the effects of rigidity by considering 
briefly the scattering from mixtures of flexible and rigid homopolymers and diblock 
copolymers made of a flexible and a rigid block. Here in this section, as a special 
case of the effects of chain architecture on the scattering and phase behavior of poly- 
mer mixtures we would like to examine another case of mixtures with different 
architecture by analyzing the behavior of cyclic polymers and compare their beha- 
vior with the one observed in the counterpart mixtures made of linear polymers. The 
interest on cyclic polymers is not new and started in the late fifties when it was 
recognized that certain biological macromolecules such as DNA and certain poly- 
peptides have a cyclic conformat i~n~~) .  Moreover, the case of cyclic chains leads to 
a substantial simplification in some fundamental studies of chain conformations 
because it introduces cyclic boundary conditions and avoids complications due to 
chain end effects. These effects may be important, especially for relatively short 
chains where any point along the chain is not far from the ends and the correlations 
between an interior point and an end point are substantially different from the corre- 
lations between two interior points. In recent years, a growing interest has been put 
on cyclic polymers due to the developments of new techniques both on the experi- 
mental and the theoretical fronts. The progress in polymer synthetic chemistry of 



Polymer blends, copolymers and networks 213 

long cyclic homopolymers and copolymers, together with the deuteration technique 
and the developments in the SANS, NSE and QELS techniques has opened up new 
prospectives for understanding the thermodynamic, structural and dynamical proper- 
ties of these systems. Recently, a number of experimental studies have been reported 
on cyclic homopolymers and copolymers. For example, Santore et al.76) performed a 
comparative study of the thermodynamic stability and phase separation kinetics of 
polymer blends containing cyclic chains of high molecular weight. They considered 
two blends of PSPVME, one containing only linear chains and the other containing 
a certain percentage of cyclic PS chains. They measured the cloud point temperatur 
over a wide range of composition and found that the blend containing cyclic poly- 
mers phase separates at a temperature roughly 7 "C above the cloud point of the sys- 
tem with linear chains only. It should be noted that the blend PS/PVME admits a 
LCST (lower critical solution temperature). More recently, Amis et a1.77,78) reported 
elastic and quasielastic light scattering data on cyclic diblock copolymers of PS- 
PDMS (polydimethylsiloxane) in cyclohexane and linear triblock copolymers of 
PDMS-PS-PDMS in cyclohexane. The two systems were studied in similar condi- 
tions of molecular weight, composition, concentration and temperature. The results 
were compared in order to investigate the effects of cyclic architecture of the copo- 
lymer on the structural and dynamical properties in the dilute range and in a wide 
domain of temperature. It is interesting to note that only the PS block which is about 
113 of the whole copolymer is visible to the light since PDMS and cyclohexane have 
roughly the same index of refraction. Moreover, the theta temperature of PS in 
cyclohexane is 35 "C and the range of temperature investigated is between 35 "C and 
12 "C. The main results of the static measurements were that the apparent theta tem- 
perature for the linear copolymer was about 20°C whereas for the cyclic copolymer, 
cyclohexane behaved as a good solvent even at the lowest temperature investigated 
which was 12°C. The QELS measurements revealed that the dynamic correlation 
function showed a single diffusive mode between 35 "C and 20 "C for both copoly- 
mers. For the linear copolymer, the dynamic correlation function showed a multimo- 
dal behavior below 20°C. At 20"C, a second slow diffusive mode appeared indicat- 
ing a beginning of copolymer micelle formation. For the cyclic copolymer, a single 
decay mode was observed from 35 "C through 12 "C, the lowest temperature investi- 
gated. These observations prompted a theoretical study of the static and dynamic 
properties of cyclic and linear polymers and copolymers which is briefly reviewed 
in the following ~ e c t i o n ~ ~ " ~ ) .  We consider the two systems illustrated in Figs. 1 and 
2. The copolymer in Fig. 1 is similar to the one investigated by Amis et al. Blocks A 

Fig. 1 .  Schematic represen- 
tation of the linear triblock 
copolymer and cyclic diblock 
copoymer light scattering investigated in ref?8) by and p) 
considered here as an appli- 
cation of the theoretical 
model 
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Cyclic Chains Fig. 2. Schematic repre- 
sentation of two mixtures of 
diblock copolymers AB and 
homopolymers A and B: 
One made with cyclic chains 
(see ref.79') and the other 
with linear chains (see 
ref.")) 

and B have approximately the same degree of polymerization which is 1/3 of the 
total degree of polymerization. The systems in Fig. 2 deal with 2 mixtures of copo- 
lymers AB and homopolymers A and B. The first system is made of all linear chains 
and is similar to the one investigated by Hashimoto et a1.81382). The second system is 
made of cyclic copolymers and homopolymers. The scattering properties and phase 
behavior of these mixtures are investigated and the results are compared to identify 
the effects of architecture. 

3.1. Static scattering and phase behavior 

The static scattering properties can be derived from the general result of the RPA 
(see Eq. (82)). In general for a mixture made of two monomer species A and B, the 
bare structure factors are given by Eqs. (37) to (39). For a mixture of homopolymers 
and block copolymers in solution, the structure matrix reads"' 

where AS is the determinant of the bare structure matrix. The partial structure factors 
sAA(q), SBB (9) and SAB (9) are obtained from the inversion of the above matrix. Let- 
ting Av be the determinant of the interaction matrix v, one obtains: 



Polymer blends, copolymers and networks 215 

S B B ( q )  can be obtained from Eq. (88) by interchanging the indices A and B and 
SBA(q) = SAB(q)  for symmetry reasons. The bare structure factors depend upon the 
type of system under investigation. 

Linear triblock BAB and cyclic diblock ABB in a solvent 

has 
For a block copolymer which is similar to the one investigated by Amis et al., one 

where for convenience, the subscript of the copolymer has been deleted and frepre- 
sents its compositionf= NAI(NA + 2NB). Combining these results yields: 

+ f2(l  - f)’N2p’AvM (96) 

The architecture of the copolymer is inherent in the form factors PA, PB and PAB 
which are specified below for a linear triblock BAB and a cyclic diblock ABB. 
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Linear triblock BAB 
Calling R, = Na2/6 the total radius of gyration, one has 

(1 - e-'*)(l - ePuB) 
UAUB 

PAB = 

where for Gaussian unperturbed chains uA = fu, uB = ( 1  - j )u  and u = q2Na2/6. 

(99) 

Cyclic diblock ABB 

has the following form factors for the corresponding cyclic diblock ABB 
Retaining the same definitions for the symbols as in the case of linear chains, one 

1 
{c[u>0]  - f 2 P A  - (1 - f ) 'PB} 

2 f ( l  -f) PAB = 

where H [ x ]  and C[u, v] are defined as follows: 

1 - e-x 
H [ x ]  = ~ 

X 

One can write the scattered intensity in t..: form 0. the Zimm equation from 
which one can deduce an apparent second virial coefficient A2app and an apparent 
radius of gyration Rgapp. The result is 
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with cA = fc, MAapp =m and and Rgapp are given by: 

a = & B / A ~ A  P = &AB/&A ( 1 0 7 )  

One could also write the expression of the radius of gyration which depends upon 
the chain architecture. The details are given in refs.79’ and where it is shown that 
by choosing a = 5 ,  p = 3.1, A2A = lo4 cm3/g2 and M = 4 lo4 g/mol, one finds a good 
agreement between the theoretical results and the data of Amis et al. 

Mixtures of homopolymers A and B and a diblock copolymer AB 

This study was prompted by the work of Hashimito et a1.8’s82) who studied the 
scattering properties and phase behavior of mixtures of linear diblock copolymers 
AB and linear homopolymers A and B. They discussed the interplay between macro- 
phase and microphase separation transition when the concentration of copolymer is 
changed. When a certain amount of copolymer AB is added to a phase separated 
blend of A and B homopolymers, there is an effect of compatibilization and the 
blend becomes homogeneous. Nevertheless, if the amount of copolymer added is 
high enough, one may observe a microphase separation transition (MST) which can 
be monitored by the probing radiation by observing the evolution of the scattering 
with q. This MST is signaled by an infinite scattered intensity at q* = 2 ~ / 1 * ,  where 
I* is the wavelength of the “major” mode of fluctuations which drives the system 
unstable. Within the RPA, the scattered intensity in the one phase region is: 

Since the mixture is made of homopolymers A and B and a copolymer AB, the 
bare structure factors are the same as in Eqs. (37) to (39). Similar studies have been 
reported on linear and cyclic chain systems. Formally, the equations written above 
are valid regardless of the chain architecture. For example, for linear chains, PA and 
PB are given by the Debye function and PAB is: 

P A B  = H[uA]H[UB] ( 1 0 9 )  

with uA = fu and uB = (1-f)u and u = q2 (NCA + NcB)$/6. For cyclic chains, the form 
factor of a cyclic homopolymer is given by the Casassa function83) 

and the same form holds for PHB changing the subscript A into B. For the cyclic 
diblock, PCA, PcB and PC-B have a different form and were reported earlier in terms 
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of the function C[u, v]. Fig. 3 shows the variation of 
Nc[$ + $ + 2$,]/[s0,$ - as a function of q for different values of the 
volume fraction of copolymer yc. From the top to the bottom curves, yc varies from 
1 to 0.4. The continuous lines represent the results for the mixtures of cyclic chains 
whereas the dotted lines correspond to the linear chain system. The latter results are 
consistent with those reported by Hashimoto and coworkers. Starting from the top 
curves one notes that the minimum for the linear copolymer is much lower than that 
of the cyclic copolymer and its location q* is smaller. This means that fluctuations 
of cyclic copolymers are damped significantly as compared to those of the linear 
copolymer and their wavelength is smaller. The critical interaction parameter for 
microphase separation is much smaller for the linear copolymer but the size charac- 
teristic of this microphase is much smaller for the cyclic one. There is an enhanced 

0 
0 1 2 3 L 5 

9% 
Fig. 3. Representation of Nc[$ + $ + 2$,,]/[$,$ - ($B)2] as a function of 4R, 
for different values of the volume fraction of copolymer yc, where 
S(4) = [$ + $ + 2$,] and W(4)  = [$$ - (gB)2]. The curves a, b, c, d correpond to 
the results for cyclic chains and pc = 1,0.8,0.6 and 0.4, respectively. The curves a’, b’, c’, 
d’ correspond to the results for linear chains and the same values of pC. The subscripts H 
and C stand for homopolymer and copolymer, respectively; A and B are the monomer 
species. In plotting the curves, we used N = NAH = NBH = Nc/2 for the degrees of poly- 
merization and RiHA = RiHB = Ric /2  for the radii of gyration (see Eq. (108)) 
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compatibility towards microphase separation transition for the system of cyclic 
copolymers. Adding homopolymers A and B to this system, reduces the miscibility 
gap between linear and cylic chains. The minimum is lowered and shifted to the left 
for both systems. For example, curves d and d' corresponding to pC = 0.4 are very 
close to each other for q from 0 to roughly 2/Rg. For q above 2/Rg, the effect of 
homopolymer architecture is more relevant. Below a,c = 0.4, the curves present no 
minimum and the fundamental mode of fluctuations is the one for which q =: 0. 
When the temperature is decreased, the first system to undergo MST is the one with 
linear chains which means that for a system showing an UCST (upper critical solu- 
tion temperature), the critical temperature is lowered due to the cyclic architecture 
of the copolymer. 

The spinodal equation which gives the critical interaction parameter can be 
obtained by letting the inverse scattering intensity go to zero at q*. For a macrophase 
q* = 0 and for a microphase transition q* is finite. The result is: 

q* is obtained by minimizing the quantity l(q)-'. The phase behavior of these 
mixtures is better illustrated in Fig. 4 which shows the variation of 2 Ncxs as a func- 
tion of a, = a)HA/[a,HA + PHB]  for two values of pC. These curves show the spinodal 
lines for microphase and macrophase separation for both the linear (dotted lines) 
and cyclic (continuous lines) polymer mixtures as defined by Eq. (1 11). The misci- 

Fig. 4. Representation of 
the normalized critical 
parameter for microphase 
separation transition 
2xsNc as a function of the 
composition in homopoly- 
mer A denoted v, = V)HA/ 

(PHA + VHB) for two 
values of the copolymer 
volume fraction qC. The 
continuous curves repre- 
sent the results for cyclic 
chain sytems and the 
dashed curves the results 
for the linear chain sys- 
tems. The curves a, a' are 
plotted for pc = 0.8 and 
the curves b, b' correspond 
to pC = 0.4 (see Eq. (111)) 
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bility gap between the systems with cyclic and linear copolymers is quite large. This 
gap is reduced significantly when pc decreases and the volume fraction of homopo- 
lymers increases. In curves b and b' for which pc = 0.6, this gap is very small, and 
for pc = 0.4, it is practically zero. In the latter case, the microphase is transformed 
into a macrophase separation transition since the fluctuating mode governing this 
phase separation has infinitely long wavelength. There is no major mode of fluctua- 
tion driving the system unstable with finite wavelength. This aspect is discussed in 
more details in ref.79). 

One should mention that the present results are consistent with the theoretical 
work of Markos and Rabinx4385' on cyclic diblock copolymers in the bulk based on 
the method of Edward's Hamiltonian. Kosmas, Benoit and Hadziioannou*@ studied 
theoretically within a model similar to the one exposed here the scattering by cyclic 
homopolymers and copolymers at large wavevectors q. They found that for large N ,  
linear and cyclic copolymers have the same behavior. Furthermore the same formal- 
ism designed to study linear polymers at large wavevectors can also be used for cyc- 
lic chains. Of course, there are many other theoretical studies of cyclic homopoly- 
mers and copolymers and it is beyond the scope of the present paper to review all of 
them. We have not reviewed in particular those investigations using more sophisti- 
cated models such as renormalization group theory methods or nonlinear higher 
order vertex functionsx7) which are essential for the characterization of the ordered 
phases beyond the order-disorder transition temperature and which are more suitable 
to describe fluctuations and more subtle conformation changes than one can do with 
a simple RPA. This is not of course that these models are not interesting but, as we 
mentioned earlier, we would like to keep our discussions limited to simple cases for 
systems not subject to strong fluctuations. 

To our judgment, the main drawback when examining the properties of cyclic 
homopolymers and copolymers is the lack of sufficient experimental data which 
could be used to test all these theories. We are well aware of the chemical difficulties 
to manifacture high molecular weight cyclic homopolymers and copolymers but we 
still hope that the chemists can feel the need and have enough motivation to embark 
into this adventure. This section on cyclic copolymers is included here in this paper 
to stress once more the need for more experiments in this field and the strong need 
for the synthetic chemist to face the challenge. 

3.2. Dynamic scattering 

Dynamic scattering properties of linear copolymers and linear homopolymers 
have been studied by many authors',2,8,9,29,66-69) . Here we focus our attention upon 
the copolymers of Fig. 1 considered in the QELS study of Amis et al. in the presence 
of a low molecular weight solvent with A = PS, B = PDMS and cyclohexane is the 
solvent. 

In general, the partial dynamic structure factors S6(q ,  t )  for a mixture of p poly- 
mers in a solvent are sums of p relaxation modes 
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where Aqk( q)  and I', (4) are the amplitudes and relaxation frequencies of the eigen- 
modes. In the case of the systems of Fig. 1, i and j run over A and B since p = 2. 
More precisely, one has: 

S A B ( q ,  f )  = A A B , ~  e-r'(q)r f AAB,F e-rF(9)f (114) 

Similar expressions can be written for SBB (q,t) and SBA (q, t )  by interchanging the 
subscripts A and B. The subscripts S and F are introduced in place of k = 1 ,  2 for the 
sake of convenience in the physical interpretation of the eigenmodes as slow and 
fast modes, respectively. Since we are interested primarely on the data of Amis et 
al., anla~,=,,,,~,,,,,,,,,~,,, = 0, and only the PS block scatters the light. One should 
focus on the partial structure factor SAA(q,  t )  whose amplitudes are 

and frequencies are: 

In these expressions, S, are the static structure factors and Q, the elements of the 
first cumulant matrix Q. The former were written explicitely for the systems of 
Figs. 1 and 2 and the elements of the first cumulant matrix are 
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where hydrodynamic interaction has been neglected. Note that the other two compo- 
nents SZBB and SZBA are deduced from the above equations after interchanging the 
subscripts A and B and changing f into 1 - f. In the Rouse limit, the single chain 
diffusion coefficients @ and D: are: 

To illustrate these results, we represent in Fig. 5 the variation of the normalized 
eigenfrequencies rs,F(y2Do) as a function of u = q2Ri for the systems of Fig. 1. 
Here, we assume that the single chain diffusion coefficients are equal to Do. The 
insert in this figure represents the variation of the normalized amplitudes As/(@V) as 
a function of u for the same mixtures. The continuous curves are the results for the 
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Fig. 5. Representation of the normalized eigenfrequencies for the slow and fast modes 
rS, t/(q2Do) as a function of u = q2Ri for the copolymers of Fig. 1 (see Eqs. (1 17) and 
(118)). The insert represents the normalized amplitude for the slow mode only, As/(@/), 
as a function of u for the same copolymers (see Eq. (116)). The continuous curves give 
the result for the cyclic diblock, the dashed curves are those of the linear triblock. In 
these plots, we have added, for comparison, the results of the linear diblock similar to the 
cyclic copolymer without one AB junction (dotted curves) 

cyclic copolymer ABB whereas the dashed curves represent the results for the linear 
triblock BAB. We have included the results for the linear diblock ABB (dotted 
curves) for completeness which is similar to the cyclic copolymer in which one of 
the two bounds AB is released. In plotting these curves we have used the values f = 

addition to a = 5 an interaction parameter such that x = A2A/10. In obtaining P, we 
have used the relationship between AZAB and A,, and A2B79,80). 

113, 2A2Mc = 0.1, a = A ~ B / A A  = 5 and B = A ~ A B / A ~ A  = 3.1. The latter value uses in 
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One observes a small difference between the frequencies of the structural mode in 
this range of q. This difference vanishes at higher 4’s. rF of the linear diblock 
(dotted curve) is clearly distinct from the other two. rs seems to be the same for the 
two linear copolymers. The difference to the cyclic copolymers increases with q. 
For the slow mode, at small q, the effect of architecture is not apparent but as q 
increases, the difference in the relaxation of the slow mode becomes more apparent 
due to the architecture of cyclic and linear chains partly because of the difference in 
R,’s. The difference between the amplitudes of the cyclic and triblock coolymers 
increases with q but the linear diblock shows a large difference to both of them at 
small 9’s. the slow mode is the only one appearing at q = 0 since its relative ampli- 
tude is 100% and decreases with q whereas A, increases. The two amplitudes of the 
linear diblocks are found to cross each other at a much lower q and above this cross- 
ing point, the fast mode dominates the dynamics of the copolymer solution’). 

4. Networks and crosslinked blends 

4.1. Free chains in a network 

derived the free energy for a network A and free chains B14): 
Combining rubber elasticity and Flory-Huggins lattice theory, Briber and Bauer 

This is the free energy per unit volume, and the molar volumes of the network 
and the free chain are set to 1 for convenience. cDS denotes the volume fraction when 
the network is relaxed (reference state of the network), u, is the volume fraction of 
the network, N ,  and NB are the average number of monomers between crosslinks 
and the degree of polymerization of the free chains, respectively. A and B are con- 
stants equal to 1/2 and 21’’ (f‘) = functionality of crosslinks), respectively. This is an 
extreme case of a crosslinked blend A/B with only AA crosslinks and no AB or BB 
crosslinks. It shows drastic differences to networks where AB and BB crosslinks are 
dominant. The second derivative of the free energy with respect to u, gives the for- 
ward structure factor: 

Introducing the critical parameter for spinodal decomposition ,ys, one has: 

- xs) 
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Briber, Lin and Bauer") investigated the collapse of free chains B in the network 
A and found three regimes. (i) For Nc < N B ,  they found that the radius of gyration of 
free chains RgB is the same as in the uncrosslinked melt. (ii) For Nc < NB, the free 
chain undergoes shrinking since its radius of gyration decreases according to the law 
RgB - N,. A similar behavior is predicted by M~thukurna r~~)  for isolated chains in a 
field of random obstacles. (iii) For Nc < NB, the free chains segregate. Muthukumar 
et al. found that when the density of obstacles is small, a transition from self avoid- 
ing to Gaussian behavior takes place. For a higher density of obstacles, a transition 
from Gaussian to the localized collapsed state occurs. RgB scales with the density of 
obstacles as R,, - l/Nc. 

The diffusion of free chains B in a network A is usually significantly slower as 
compared to the case where the matrix B is made of free polymer and NB I Nc. The 
Harley-Crank equation for the diffusion coefficient gives") 

where xA and xB are the mole fractions of A and B polymers and pB is the chemical 
potential, 

which using Eq. (124) yields: 

- y) l i3  - B ( l  - y) 
+ 1 - y + l n y t ~ ( 1 - y ) *  

Nc 
P B  = 

Fig. 6 represents the spinodal and coexistence curves as defined by Eqs. (126) and 
(129) where in the latter case the coexistence curve is obtained by letting pB = 0. 
This phase diagram is slightly different from the usual one for a blend of free chains 
and describes the effects of the elasticity term of the network A. 

For a crosslinked network at constant density, one has 0: = 0, y = p~ and the 
diffusion coefficient becomes: 

D = D : ( I  - 

Including the effects of crosslinks in the elastic energy term reduces the diffusion 
coefficient and hence slows down the dynamics. One can study also the diffusion 
profile in the vicinity of the network and look at the penetration of the network by 
the free chains. 
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Fig. 6. Representation of 
the phase diagram for a 
network (A) and free 
chains (B) mixture. The 
lower curve is the coexis- 
tence curve obtained by 
equating the chemical 
potential in E ( 1  29) to 

1% j zero (see ref. ) and the 
upper curve is the spinodal 
line as defined by 
Eq. (126). The following 
values were used in these 

A =  1 . B =  112 
plots: NC = 500, NB = 50, 

g 0.10 
N 
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Once again, we would like to stress the fact that the list of references given here 
on this subject is not complete and only few of them arbitrarily chosen are cited. 

4.2. Crosslinked blends: de Gennes analogy 

The generalization of the theory of multicomponent mixtures to crosslinked net- 
works is not easy and requires a reformulation of the RPA to account for the cross- 
links. To overcome this difficulty in the case of blends, de Gennes4') proposed an 
analogy with charges in dielectric media. Using the fact that charges of opposite 
signs create local polarizations inducing attractive forces, de Gennes compared these 
forces with the elastic restoring forces characterizing the network. These forces pro- 
duce enhancement of compatibility and since the two homopolymers A ane B are 
linked together, the phase separation in the thermodynamic limit of q = 0 cannot 
take place. Instead, a microphase separation transition (MST) is observed when the 
temperture reaches the critical value Ts. Fig. 7 gives a phase diagram which illus- 
trate this enhancement of compatibility and a change from the macrophase transition 
in the blend of free chains to a microphase transition when the blend is crosslinked 
via AB junctions. This behavior can also be observed in scattering experiments 
whereby the scattered intensity exhibits a peak at q = q* which diverges at T = Ts. 
Concentration fluctuations have large amplitudes, long wavelength A* =2 xlq* and 
their relaxation time is infinitely long. 
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Fig. 7. Representation of 
the spinodal curves for 
macrophase separation of 
a blend A D  (lower curve) 
and for microphase 
separation of the corre- 
sponding crosslinked net- 
work (with A-B crosslinks 
only, upper curve). This 
phase diagram is given to 
illustrate the compatibility 
enhancement towards 
phase separation and due 
to the A-B crosslinks (see 
ref.4o)) 

Including the elasticity term due to restoring forces of the crosslinked blend, de 
Gennes obtained the structure factor as: 

xo - x  q2a2 c +- 1 s- ( 4 )  =-+- 
2 24 q2 

where x0 is the critical parameter for macrophase separation of the blend of free 
chains in the RPA scheme: 

C is the elastic constant of the crosslinked blend which has been obtained by de 
Gennes in terms of the number of monomers between crosslinks N, as: 

S ( q )  admits maximum at q = q* which can be obtained by equating the derivative 
dS(q)/dq to zero: 
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Fig. 8 shows the variation of S(q)  as a function of q for sevral values of the inter- 
action parameter x shown on this figure and xo = 0. As the x parameter increases, the 
peak height increases and diverges at the critical value xs = 0.0098. Its location q* 
however does not shift with the temperature as indicated by Eq. (135). Assuming 
that crosslinking is made by y-ray irradiation, Eq. (135) means that q* is propor- 
tional to the square root of the radiation doseI4’. Equating S ’ ( q  = q*) to zero yields 
the critical parameter for MST: 

4.9 
xs = xo + __ 

NC 

5 1200 

cr, 0.008 - T  

Fig. 8. Representation of 
the scattering curve S ( q )  as 
a function of q predicted by 
de Gennes’ model (see 
Eq. ( 1  32)) for several 
values of the c-parameter 
as indicated on the curves. 
The following parameters 
were used in these plots: xo 
= 0, CT= 8 A and Nc = 500. 
Note that the critical para- 
meter for MST has the 
value xs = 0.0098 
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This is in qualitative agreement with the SANS data of Briber and Baueri4) on 
dPSPVME crosslinked blend although, instead of 5.42 in Eq. (135), the data gives 
2.3. Moreover, the scattering at q = 0 is found to be finite unlike the Gennes’ model 
which precticts S(q  = 0) = 0. This discrepancy requires a generalization of the above 
model to improve the agreement with the data. There are several ways to generalize 
de Gennes model and improve the agreement with the experimental behavior. We 
shall not examine all the possiblities suggested in the literature and we content our- 
selves with one or two examples using the concept of frozen fluctuations at the tem- 
perature of crosslinking as first suggested by Briber et and later used by 
Betachy et al.91*92) 
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4.3. Extension of de Gennes' model 

Briber and Bauer performed SANS experiments on uncrosslinked and cross- 
linked mixture of dPB/PB with N ,  = 38 at temperatures varying between zero and 
150 0C'4332). They have shown that (i) for uncrosslinked blends, the intensity 
increases substantially with T and the interaction parameter varies with temperature 
as (Ts = 99.2"C): 

0.314 
T 

x = -~ - 5.34 (137) 

In this regard, it is interesting to note that the uncrosslinked blend of dPS/PVME 
has a LCST and its interaction parameter x is found experimentallly to follow the 
law: 

(ii) The intensity obtained by SANS or dPB/PB (polybutadiene) is found to be 
independent of T for the crosslinked blend and does not show microphase separation 
transition even near 0 "C (T, = 99.2 "C). To analyze this behavior, they assumed that 
the scattering signal after crosslinking is the sum of two terms: 

where Idq)  is a signal of frozen fluctuations at the moment of crosslinking which 
remains essentially constant independent of T. I ,  (q) is the scattering after crosslink- 
ing and they suggested to identify this contribution with de Gennes result. Analyzing 
data for the crosslinked and uncrosslinked systems following a temperature jump 
from 105 to 150"C, they found three distinct regions limited by q1 and q2: At q < ql ,  
the intensity of the crosslinked network is higher than that of the free chains. Two 
competing mechanisms take place: the crosslinking reaction tends to freeze the con- 
centration fluctuations with a certain rate and the thermal fluctuations tend to relax 
these fluctuations with a rate T-'(q) - q2. It seems that below ql ,  the freezing 
mechanism is faster than the relaxation process.In the intermediate range q l  < q < 
q2, the scattering from the crossliked blend is weaker whereas at q > q2 the scattering 
from the free chains and th ecrosslinked blend are the same. 

A slightly different argument has been used to extend de Gennes model and make 
it consistent with the data at q = 0. It uses the same analogy proposed by de Gennes 
but includes the screening phenornen~n~ '~~ ' ) .  This introduced a new characteistic 
length K-' equivalent to the Debye-Huckel screening length. To understand this, one 
writes the free energy functional per unit volume 

where [ ~ ( r ) ]  is the Flory-Huggins free energy: 
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Vp(r) is the gradient of a,(r) and F,,(a,) the excess free energy which, in the case 
of a dielectric medium, is written in terms of the local electric field E and the dielec- 
tric constant E as: 

F,, =cIEI2 (142) 

In de Gennes' analogy, F,, is written in terms of the polarization P and the rigidity 
constant C of the medium as: 

F,, = CIPI2 (143) 

Expressing this excess free energy in terms of Fourier components of the density 
fluctuations, one finds in the case of bare charges a q-2 behavior whereas in the case 
of screened charges, one observes a [q2 + K ~ ] - ~  behavior which is reminescent of the 
long range screened correlations e-Kr/r. This leads to the modification of Eq. (132) 
into the form: 

C +- xo - x  I q2a2 s-'(q) = - 
2 24 q2 + K~ 

(144) 

K-' is the counterpart of the Debye screening length which for weakly crosslinked 
networks is identified as the end-to-end chain length: 

K - ~  = No2  (145) 

This analogy can also be extended to blends in the presence of a low molecular 
weight solvent. For arbitrary crosslinking densities, Bettachy et proposed a 
model which combines de Gennes' analogy and the identification of the pseudo- 
screening length K-' with the correlation length of the frozen fluctuations at the tem- 
perature of crosslinking Ti. They defined K in terms of Ti and the temperature to 
which the system is driven after crosslinking. In de Gennes' initial model, it is impli- 
citely assumed that the initial temperature Ti is infinite and the blend is completely 
homogeneous. Bettachy et al. assumed that the scattering at q = 0 remains the same 
before and after crosslinking. By equating the scattered intensity for the blend of 
free chains at T =  T,, i.e., S' (q = 0, free chains) = 2 (xo -xi), to the forward scatter- 
ing intensity for the crosslinked blend at Tf, i. e., S' ( q  = 0, crosslinked) = 2 (xo - xi, 
+ C/K', one obtains the characteristic length K-':  

C 
Xf -xi 

K 2  ___ 

Since C - N;', one finds tht K-' is proportional to the average distance between 
crosslinks. For weakly crosslinked networks, Nc - N and one recovers the earlier 
result. The position of the maximum q* is also dependent upon K and C: 
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K2 (147) 

The effect of initial frozen fluctuations is to shift q* to smaller values implying a 
reduction in the sharpness of the scattering peak and the microphase structure. There 
is an enhancement of compatibility towards MST taking place at the critical para- 
meter where s-' (q = q*) = 0: 

2c xs = xo (blend) + 
q*2 f K 2  

xs is increased by a quantity proportional to a when the crosslinking effect is 
included. 

4.4. Charged blends with crosslinks 

For simplicity, we choose the case where polymer A is charged and B neutral and 
assume that f' monomers separate two charges e along a chain A91). The static 
structure factor S(q )  becomes: 

The difference to the case of neutral networks is given by the last term in this 
equation which contains the new rigidity constant Cd. The similarity between the 
electrostatic term and the network elasticity contribution is a clear illustration of the 
analogy suggested by de Gennes. The only distinction is in the rigidity constants C's 
and the screening lengths K'S which have different origins and depend upon different 
parameters; c d  depends on the charge parameter f and the Bjerrum length 1 = & 
as follows 

where E is the dielectric permittivity, k,  the Boltzman constant. 

The volume fraction of counterions @ci is equal to xf@ because of electroneutrality 
and @salt is the added salt concentration. The electrostatic term in Eq. (149) implicitly 
means that the Debye-Huckel model has been used for point-like charged particles 
on the polymer network. This approximation is perhaps too crude but it helps to 
keep the formalism at a fairly simple level without, in our opinion, loosing the main 
features of the effects of long range electrostatic interactions. 

The Debye-Huckel approximation provides a reasonable description of interaction 
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between point-like particles at long distances where other interactions of much 
shorter ranges such as hard sphere or Van der Waals interactions are weaker. 
Obviously, one could improve quantitatively the electrostatic description by using 
other models such as the Poisson-Boltzmann equation but this introduces additional 
numerical complications without a real gain into the physical insight of the charged 
network problem. 

Eq. (149) shows tht depending upon the.relative values of the characteristic quan- 
tities C's and K ' S ,  the scattering behavior is either dominated by the crosslinks or the 
charges. In some cases, it may however be difficult to distinguish these contributions 
and evaluate them separately. One can consider three cases. 

a: K d = K g = K  

In this case, the density of crosslinks, the ionic strength and f are tuned in such a 
way that: 

lla is proportional to Manning's parameter, N/n is the number of crosslinks per 
chain. The volume fraction in Eq. (153) is proportional to 1/N and may be quite 
small. In a theta solvent, it is independent of the crosslink density n and decreases as 

in a good solvent. In the latter case, the chains are swollen inside the network 
pore and therefore the concentration of counterions is higher implying that the 
screening is more effective as compared to a theta solvent. The electrostatic and the 
elasticity terms can be combined and one obtains: 

S,' (q)  is the bare structure factor and caPp the apparent rigidity constant: 

The peak position of S ( q )  shifts to lower values when capp decreases as one can 
see from Eq. (147). There is substantial enhancement of compatibility towards 
macrophase separation and emergence of a peak at qm as a result of combined elastic 
and electrostatic forces. By lowering the temperature, the interaction between A and 
B reaches a critical value xs  at T =  T, and the structure factor diverges at q = q*: 
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The fluctuations with a wavelength in the vicinity of A* = 2dq*  are unstable and 
those with a wavelength outside this range are stable and describe the dynamics in 
the homogeneous one phase region. 

b: icd S= icg: Excess added salt 

K~ increases linearly with the square root of the added salt concentration resulting 
in a substantial weakening of Coulomb forces due to screening at distances exceed- 
ing K;' . In these conditions, the crosslinks determine the essential features of the 
phase behavior and scattering properties of the network. In excess salt, one recovers 
the behavior of neutral polymers. 

C: Kd <. K g :  NO added salt 

In the absence of added salt, the screening length is determined uniquely by the 
counterions released by the network itself. If the range of electrostatic interactions is 
long compared to the average distance between crosslinks, the Coulomb interactions 
produce the main effect governing the scattering properties and phase behavior of 
the network. 

5. Conclusions 

In this paper, the scattering properties and phase behavior of polymer blends, 
block copolymers and networks are investigated. The presence of stiff chains in the 
blend induces a liquid crystalline phase which is discussed on the basis of the 
nematic interaction only. Models developed by Doi, Hammouda and others using a 
generalization of the RPA are briefly reviewed. The compressibility problem is 
examined together with the free volume theories of Sanchez et al. and Hammouda et 
al. The effects of pressure are included along these lines and the condition under 
which coupling between density and composition fluctuations vanishes is shown. 

The dynamics of copolymers in bulk and in solution lead to emergence of new 
modes which are not encountered in counterpart blends of homopolymers. These are 
the structural mode, the polydispersity mode and the aggregation diffusional mode. 
The case of cyclic homopolymers and copolymers and their mixtures is considered. 
The scattering and thermodynamic properties of these mixtures are compared with 
those of their counterpart made of linear chains only. Drastic differences are 
observed. The mixtures with cyclic chains are characterized by a much better com- 
patibility than their linear counterparts. It is shown that an interplay between macro- 
phase and microphase separation transitions exists in general but its implications are 
different whether chains are linear or cyclic. 

The dynamics are also characterized by the bimodal analysis of slow and fast 
modes but the properties of these modes are highly sensitive to the cyclic architec- 
ture of the chain. 

The presence of crosslinks in a blend is also discussed. Two systems are consid- 
ered. The first one is a mixture of a network A and free chains B. Effects of the net- 
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work elasticity on the phase behavior are discussed using the model of Briber et al. 
A crosslinked blend in which A and B homopolymers are connected by permanent 
crosslinks is also considered. de Gennes’ model in which the effects of crosslinks is 
compared with those of electric charges in a dielectric medium is also discussed. 
Consistently with experiments, this model predicts enhancement vis-h-vis the 
macrophase separation transition but the emergence of a microphase transition if the 
temperature of the crosslinked blend reaches a critical value. The extension of de 
Gennes model to include the effects of initial fluctuations at the temperature of 
crosslinking is discussed. This extension is motivated by the experimental observa- 
tion that the scattering at 4 = 0 is finite different from zero unlike the de Gennes 
model which predicts that S’ (4) = 0 at 4 = 0. 
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